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In this talk, we will prove that every compact surface (2-manifolds) can be
triangulated. This result allows the classification of all compact surfaces.
We will do so through topological and combinatorial methods, by intro-
ducing the concept of graphs. This result, as we will see, reposes firmly on
the Jordan-Schönflies theorem, which is a generalization of the well-known
Jordan Curve Theorem.

1 Preliminaries
Definition 1.1 (Graphs). A graph G is a triple (V,E, φ) where V is a set of vertices,
E is a set of edges, and φ : E −→ [V ]2 is a function assigning to every edge e a
two-element set of vertices φ(e) = {u, v} called the endpoints of the edge. We say that
the edge e is incident to the two vertices {u, v} ∈ φ(e). Two edges e and e′ are said to
be parallel if φ(e) = φ(e′). A simple graph is a graph with no parallel edges.

We denote by [V ]2 the set of all subsets {u, v} consisting of two distinct elements
u, v ∈ V . Note that if G is simple, then its set of edges E is a subset of [V ]2. We
suppose from now on that V and E are finite sets.
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Figure 1: Graph of a triangulation of a sphere
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A graph H = (VH , EH , φH), is a sub-graph of a graph G = (V,E, φ) if VH ⊂ V ,
EH ⊂ E and the restriction of φ to EH is φH . Given a graph G = (V,E, φ) and a
vertex v we define G − v to be the graph (V \ {v}, E′, φ′), where E′ ⊂ E is obtained
by deleting all edges incident to v and φ′ = φ/E′ .

Definition 1.2 (Chains, paths, cycles). A chain is a sequence

π = (v0, e1, v1, e2, ..., vn−1, en, vn), n ≥ 1

where vi ∈ V , ei ∈ E and φ(ei) = {vi−1, vi}. (in other words, ei is an edge with
endpoints vi−1, vi). We say that v0 and vn are joined by the chain π. A path is a chain
where no vertex vi occurs twice, that is, if vi 6= vj for all i 6= j with 0 ≤ i, j ≤ n. A
cycle is a chain such that v0 = vn, n ≥ 2, and vi 6= vj for all i 6= j with 0 ≤ i, j ≤ n−1.

Definition 1.3 (Connected graphs). A graph G is said to be connected if and only if
any two distinct vertices of G are joined by a path. It is 2-connected if

– G is connected.

– G has at least three vertices.

– G− v is connected for every vertex v of G.

Given a graph G = (E, V, φ), we define an equivalence relation v on its set of edges
E as follows: For any two edges e1, e2 ∈ E, we say that e1 v e2 ⇔ either e1 = e2 or
there is a cycle containing both e1 and e2. Each equivalence class of edges together
with all their endpoints is called a block of the graph. We agree that every isolated
vertex is a block so that every graph is the union of its blocks. An edge e whose
equivalence class is reduced to {e} is called a cutedge . A vertex that belongs to more
than one block is called a cutvertex.

Exercise 1.4. show that any two distinct blocks have at most one vertex in common
and that such a vertex is a cutvertex.

The following proposition helps for a better understanding of the definitions above
and is not very hard to prove :

Proposition 1.5. Let G be a connected graph with at least three vertices. Then the
following properties are equivalent:

(i) G is 2-connected.

(ii) Any two vertices of G belong to a common cycle.

(iii) Any two edges of G belong to a common cycle.

(iv) G has no cutvertices.

(v) G has a single block.
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Proposition 1.6. If G is a 2-connected graph, then for any 2-connected sub-graph H
of G, the graph G can be build up starting from H by forming a sequence of 2-connected
graphs G0 = H, G1, ..., Gm = G, such that Gi+1 is obtained from Gi by adding a path
in G having only its endpoints in Gi, for i = 0, ...,m− 1.
In particular, H can be any cycle of length at least three.

Proof. Let G = (V,E, φ), H = (VH , EH , φH) be as above. We proceed by induction
on the number of edges in G: If G = H there is nothing to prove. Suppose H 6= G,
since G is connected, there must be some edge, say e = {u, v} ∈ E \EH , with u ∈ VH
and v ∈ V . Since G is 2-connected, G− u is connected. Consider a shortest path α in
G− u from v to some vertex in VH . Because this is a shortest path to H, all its edges
must be outside EH and thus α is a path whose endpoints belong to VH and whose
edges are all outside EH , if we add this path to H we obtain a new 2-connected graph
H0 = (VH0

, EH0
, φH0

).
Now, |E −EH0

| < |E −EH |, thus by applying the induction hypothesis to H0 we get
the result.

A simple polygonal arc in the plane is a simple continuous curve which is the union
of a finite number of straight line segments. A segment of a simple closed curve
f : [0, 1] −→ R2, is either the image f([a, b]) or the image f([0, a]∪ [b, 1]) for some a, b
with 0 ≤ a < b ≤ 1.

Definition 1.7 (Topological embedding). A graph G can be embedded in a topological
space X, if the vertices of G can be represented by distinct points of X and every edge
e of G can be represented by a simple arc which joins its two endpoints in such a way
that any two edges have at most an endpoint in common.
A planar graph is a graph that can be embedded in R2, and a plane graph is the image
in R2 of a graph under an embedding.

Given a plane graph G, let |G| be its topological realization, i.e the subset of R2

consisting of the union of all the vertices and edges of G. it is a compact subset of
R2 and its complement R2 \ |G|, is an open subset of R2. The arcwise connected
components of R2 \ |G| are called the faces of G.
An isomorphism f : G1 −→ G2, between two graphs G1 and G2 is pair of bijections
(fv, fe), with fv : V1 −→ V2 and fe : E1 −→ E2, such that for every edge e ∈ E1 :

φ1(e) = {a, b} ⇒ φ2(fe(e)) = {fv(u), fv(v)}

Lemma 1.8. If Ω is any open, arcwise connected subset of R2, then any two distinct
points in Ω are joined by a simple polygonal path.

Proof. Let x, ∈ Ω and let A be a simple arc joining x and in Ω. For each point z ∈ Ω
there is an ε > 0 such that the open disc D(z, ε) ⊂ ω. By continuity A is compact in
Ω hence it has a finite open cover

{D(zi, ε), zi ∈ A}1≤i≤k

Thus, we can now construct a simple polygonal arc in Dz1 ∪ ...∪Dzk connecting x and
y.
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Note that the above lemma holds for Ω = R2. One sees that if G is a planar graph,
then G can be drawn (embedded) in the plane so that all edges are simple polygonal
arcs, (but we won’t need this result).
For the proof of our main theorem, we need a version of Proposition 1.6 for planar
graphs. Such a proposition is easily obtained using Lemma 1.8 in the following way :
we proceeds by induction as in the proof of Proposition 1.6 but instead of curvy paths
added to Gi, we use paths of simple polygonal arcs using Lemma 1.8 and similarly,
curvy edges in the cycle H are replaced by paths of simple polygonal arcs.
We obtain thus the following :

Proposition 1.9. If G is a 2-connected planar graph, then for any 2-connected planar
sub-graph H of G, the graph G can drawn in the plane starting from H by forming a
sequence of 2-connected plane graphs G0, G1, ..., Gm such that G0 is a planar embedding
of H, Gm is a planar embedding of G, and Gi+1 is obtained from Gi by adding a
path consisting of simple polygonal arcs having only their endpoints in Gi, for i =
0, ...,m− 1.
In particular, H can be any cycle of length at least three and thus, there is a also a
drawing of G in the plane as above where G0 is a drawing of H with simple polygonal
arcs.
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2 Jordan Curve theorem and Jordan-Schönflies theorem
The crucial ingredient in the proof that a compact surface can be triangulated is a
strong form of the Jordan curve theorem known as the Jordan-Schönflies theorem.

Theorem 2.1 (Jordan-Schönflies). If f : C −→ C ′ is a homeomorphism between two
simple closed curves C and C ′ in the plane, then f can be extended into a homeomor-
phism of the whole plane.

The Jordan-Schönflies theorem can be proved in an elementary (but tedious) way in
[1] (Chap. II, section 2.2), or using tools from algebraic topology (homology groups).
Such a proof can be found in [2] (Chap. IV, Theorem 19.11).
We will need two more technical results :

Theorem 2.2. If G,G′ be 2-connected plane graphs such that g is a homeomorphism
and a graph-isomorphism of G onto G′. Then, g can be extended to a homeomorphism
of the whole plane.

Proof. The proof uses Jordan-Schönflies theorem and an induction on the number of
edges in G.
If G has one cycle, then Theorem 2.2 reduces to The Jordan-Schönflies Theorem. If
not, then by Proposition 1.9 G has a path P and a 2-connected sub-graph G1 such
that G is obtained from G1 by adding P to C ∪ C̊ where C bounds a face of G1. As
G1 has fewer cycles than G, we apply the induction hypothesis to G1 first, and then
to the two cycles of C ∪ P that contain P .

Definition 2.3 (Bad, Very bad segments). Let γ, γ2, γ3 : [0, 1] −→ R2 be three closed
simple continuous curves and assume that γ3([0, 1]) ⊂ γ2([0, 1]).
We define a bad segment of γ to be a segment segment P joining two points, p, q ∈
γ2([0, 1]) with all the other points in γ2([0, 1]).
We define a very bad segment as a bad segment that intersects γ3([0, 1]).

Lemma 2.4. There are only finitely many very bad segments.

Proof. Since the image of γ is compact and since γ3([0, 1]) ⊂ γ2([0, 1]), there is some
ε > 0 so that γ3([0, 1]) is covered by a finite number of open discs of center in γ3([0, 1])
and all inside γ2([0, 1]). Suppose that infinitely many bad segments intersect γ3([0, 1])
and let P1, ..., Pn, ... be some infinite sequence of such very bad segments.
Each very bad segment corresponds to two distinct points pn = γ(un) and qn = γ(vn)in
γ([0, 1]) and we can form the infinite sequence (tk)k≥0 with t2k−1 = uk and t2k = vk
for all k ≥ 1.
Since [0, 1] is compact, (tk)k≥0 has an accumulation point, say t. By continuity of γ,
(pn)n≥0 and (qn)n≥0 must have some sub-sequences that converge both to s = γ(t).
As all the qn are in γ2([0, 1]), one has s ∈ γ2([0, 1]) and γ intersects γ2 at s.
Since γ is a continuous, for every η > 0 there is some ε′ so that γ(u) ∈ B(s, η) for all
u with |u − t| < ε, which means that some segment Pn is contained in the open disc
B(s, η). But then, if we choose η < ε, there is some Pn that do not intersectγ3([0, 1]),
which is a contradiction. Therefore, there are only finitely many very bad segments.
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3 Every compact surface can be triangulated
Definition 3.1. A surface S is a Hausdorff space which is locally homeomorphic to a
disk. In other words, for every point p ∈ S, there exists an open set U ⊂ S such that
p ∈ U and such that U is homeomorphic to the open disk D2 = {(x, y)/x2 + y2 < 1}.
If S is compact, it is often referred to as a closed surface.

Example 3.2. – The 2-Sphere S2 : The sphere is a closed surface, homeomorphic
to {(x, y, z) ∈ R3/x2 + y2 + z2 = 1}.

– The Torus T2 : the torus is a closed surface, that can be obtained in different
ways :

1. In R3, by rotating the circle of equation (x − 2)2 + z2 = 1 around the axis
(0z).

2. Through the homeomorphism T2 ' S1 × S1, where S1 is the circle.

3. By glueing the two ends of a cylinder in a "natural" way.

– The Möbius strip : obtained after glueing the two opposite sides of a rectangle
after twisting it.

– The Klein bottle K2 : a closed surface that can also be obtained in different ways
:

1. By glueing two Möbius strips by their ends.

2. By glueing the two ends of a cylinder in the "opposite" way of the Torus
construction.

Definition 3.3. Consider a finite set P of pairwise disjoint convex polygons (together
with their interiors) in the plane such that all sides have the same length. Let S be
a topological space obtained by gluing polygons P such that every edge of a polygon
P ∈ P is identified with precisely one side of another (or the same) polygon. This
defines a graph G whose vertices are the corners of the polygons and whose edges are
the sides of the polygons. If S is a connected surface (i.e., S is locally homeomorphic
to a disc at every vertex v of G) then we say that G is a 2-cell embedding of S. If
all the polygons are triangles, then we say that G is a triangulation of S and S is a
triangulated surface.

Theorem 3.4 (Main result). Every compact (connected) surface S is homeomorphic
to a triangulated surface.

Proof. We prove that S is homeomorphic to a surface with a 2-cell embedding, it is
sufficient since the interior of any convex polygon can be triangulated.
We will proceed in three major steps :

– Setup .

For each point p ∈ S, we choose a disc neighbourhood which we think of as an
actual disc in the plane, disjoint from all others. Mainly, let D(p) be an open
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disc in the plane which is homeomorphic to an open subset Up, with p ∈ Up via
a homeomorphism, θp : D(p) −→ Up. Inside D(p) We draw two quadrangles
Q1(p) and Q2(p) such that p ∈ ˚θp(Q1(p)) ⊂ ˚θp(Q2(p)). Since S is assumed to be
compact, there is a finite number of points p1, ..., pn, such that

S ⊂
n⋃

i=1

˚θpi
(Q1(pi))

Since D(p1), ..., D(pn) are subsets of the plane, we may assume that they are
pairwise disjoint as we wanted.
In what follows we are going to keep D(p1), ..., D(pn) fixed in the plane but
we shall modify the homeomorphisms θpi

and the corresponding sets Upi
=

θpi(D(pi)) on S and consider new quadrangles Q1(pi). More precisely, we shall
show that Q1(p1), ..., Q1(pn) can be chosen such that they form a 2-cell embed-
ding of S.

– The painful step.
The main difficulty will be arranging things so that the Q1(pi)’s have only a finite
number of points of intersection on S. The idea then is to build up starting
with Q1(p1) and show how to choose Q1(p2) to ensure that θp1(Q1(p1)) and
θp2

(Q1(p2)) only have a finite number of points of intersection inside S.
Suppose, by induction on k, that Q1(p1), ..., Q1(pk−1) have been chosen so that
any two of θp1

(Q1(p1)), ..., θpk−1
(Q1(pk−1) have only a finite number of points in

common in S.
We now focus on the "outer square" for pk, Q2(pk). Choose Q3(pk) to be a
square between Q1(pk) and Q2(pk). We are going to use Q3(pk) to find a "new"
Q1(pk) which will complete the inductive step. The key notion is the concept
of a bad segment introduced in Definition 2.3. a bad segment is a segment P of
some Q1(pj) (1 ≤ j ≤ k − 1) such that θpj

(P ) joins two points of θpk
(Q2(pk))

and has all other points in ˚θpk
(Q2(pk)). a bad segment inside Q2(pk) is very bad

if θpj
(P ) also intersects θpk

(Q3(pk)).

• CLAIM1 : There may be infinitely many bad segments in Q2(pk) but only
finitely many very bad ones.

The reason why there may be infinitely many bad segments is that seg-
ments are continuous simple curves and such curves can wiggle infinitely
often while intersecting some other continuous simple curve infinitely many
times. As Q3(pk) ⊂ ˚Q2(pk), Lemma 2.4 implies that there are only finitely
many very bad segments.

Now, since there are only finitely many very bad segments, their union together
with Q2(pk) form a 2-connected plane graph that we will call G. Using Propo-
sition 1.9, we can redraw G inside Q2(pk) such that we get a plane graph G′

which is homeomorphic and graph-isomorphic to G and such that all edges of
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G′ are simple polygonal arcs. Now, we apply Theorem 2.2 to extend the isomor-
phism from G to G′ to a homeomorphism of the interior of Q2(pk) and fixing
Q2(pk). Let Q′1(pk) and Q′3(pk) be the images of Q1(pk) and Q3(pk) under
this homeomorphism. Note that Q′1 and Q′3 are simple closed curves such that
pk ∈ ˚θpk

(Q′1) ⊂ ˚θpk
(Q′3).

• CLAIM2 : We can now choose a simple closed polygonal curve Q′′3 in
˚Q2(pk) such that Q′1 ⊂ Q̊′′3 and such that Q”3 intersects only the very bad

ones. (and is disjoint from any bad segment inside Q2(pk)).

Indeed, for every point q ∈ Q′3, let R(q) be a square with q as midpoint
such that R(q) does not intersect either Q′1 nor any bad segment (only the
intersections with the very bad segments are allowed). We consider a (min-
imal) finite covering of Q′3 by such squares. The union of those squares is a
2-connected plane graph whose outer cycle can play the role of Q”3.

The main thing we’ve achieved now is that the very bad segments are now simple
polygonal arcs. Now, G′∪Q′′3 is a 2-connected plane graph (either 2-connected or
consists of two blocks). If we use Proposition 1.9 we can redraw it so that Q”3 is
in fact a quadrangle having Q′1 in its interior and then use Theorem 2.2 once more
to extend this isomorphism to the plane. If we let Q”3 be our "new" choice of
Q1(pk), then any two of θp1

(Q1(p1), ..., θpk
(Q1(pk) have only finite intersections,

proving thus the induction assumption.

– Final step .
The union of the θpi

(Q1(pi))’s now gives a nice graph Γ on the surface S and the
Jordan-Schönflies Theorem gives the desired homeomorphism to a 2-cell surface.
More precisely, each Q2(pk) contains now only finitely many very bad segments,
which are all simple polygonal arcs forming a 2-connected plane graph. Each
region of the complement of Γ in S is bounded by a cycle C which lives inside
some Q2(pk). Now we draw a convex polygon C ′ of side 1 such that the corners
of C ′ correspond to the vertices of C. After appropriate identification of the
sides of the polygons C ′ corresponding to the faces of Γ in S we get a surface S′
with a 2-cell embedded graph Γ′ which is isomorphic to Γ . This isomorphism
of Γ to Γ′ may be extended to a homeomorphism f of the embedding of Γ on S
onto the embedding of Γ′ on S′.
In particular, the restriction of f to the above cycle C is a homeomorphism
of C onto C ′. By the Jordan-Schönflies Theorem, f can be extended to a
homeomorphism of the interiors of the C to the interior f C ′. This defines a
homeomorphism of S onto S′ and thus proves the theorem.
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